

Index Internals
Heikki Linnakangas / Pivotal

Index Access Methods in
PostgreSQL 9.5

● B-tree
● GiST
● GIN
● SP-GiST
● BRIN

● (Hash)

… but first, the Heap

Heap

● Stores all tuples in table
● Unordered

Copenhagen
Amsterdam
Berlin
Astana

Athens
Baku
Zagreb
Andorra la Vella

Bern
Helsinki
Brussels
Bucharest

Budapest
Chișinău
Ljubljana
Dublin

Kiev
Bratislava
Lisbon
Stockholm

Heap

● Divided into 8k blocks
Copenhagen
Amsterdam
Berlin
Astana

Athens
Baku
Zagreb
Andorra la Vella

Bern
Helsinki
Brussels
Bucharest

Budapest
Chișinău
Ljubljana
Dublin

Kiev
Bratislava
Lisbon
Stockholm

Blk 0

Blk 1

Blk 2

Blk 3

Blk 4

TID: Physical location of heap tuple

0: Athens
1:
22: Helsinki
3: Zagreb
4: Andorra la Vella

Blk 0

Blk 1

0: Copenhagen
1: Amsterdam
2: Berlin
3:
4: Astana

Example: Helsinki, Block 1, item 2 within block

Item pointer

Example: Helsinki, Block 1, item 2 within block

(1, 2)

● Block number and position within page
● Uniquely identifies a tuple version

Indexes in PostgreSQL

● Indexes store TIDs of heap tuples
– except BRIN

● There is no visibility information in indexes
– except for a simple “dead” flag, as an optimization

– UPDATE inserts a new index tuple

– Dead tuples are removed by VACUUM

B-tree

Good old B-tree

● Default index type
● Tuples are stored on pages, ordered by key
● Tree, every branch has same depth

B-tree, single page

Amsterdam (0, 12)
Ankara (4, 2)
Astana (1, 9)
Athens (4, 1)
Baku (3, 10)
Belgrade (2, 2)

B-tree, leaf level

Amsterdam (0, 12)
Ankara (4, 2)
Athens (4, 1)
Baku (3, 10)
Belgrade (2, 2)

Berlin (3, 9)
Bern (4, 3)
Bratislava (2, 3)
Brussels (0, 4)
Bucharest (0, 2)

btpo_next btpo_prevbtpo_next btpo_prev

B-tree, two levels

<begin>
Berlin
Budapest

Amsterdam (0, 12)
Ankara (4, 2)
Athens (4, 1)
Baku (3, 10)
Belgrade (2, 2)

Berlin (3, 9)
Bern (4, 3)
Bratislava (2, 3)
Brussels (0, 4)
Bucharest (0, 2)

Budapest (0, 3)
Copenhagen (1, 2)
Dublin (3, 2)
Helsinki (0, 1)
Kiev (1, 1)

B-tree that's missing nodes still
works!

Amsterdam (0, 12)
Ankara (4, 2)
Athens (4, 1)
Baku (3, 10)
Belgrade (2, 2)

Berlin (3, 9)
Bern (4, 3)
Bratislava (2, 3)
Brussels (0, 4)
Bucharest (0, 2)

Budapest (0, 3)
Copenhagen (1, 2)
Dublin (3, 2)
Helsinki (0, 1)
Kiev (1, 1)

<begin>
Berlin
Budapest

B-tree details

● Lehman & Yao
● When a page becomes completely empty, it

can be removed and recycled
● Half-empty pages are never merged
● Free Space Map to track unused pages

B-tree, three levels

Sidenote: Metapage

● Most index types in PostgreSQL has a
metapage at block 0
– All but GiST

● B-tree Metapage
– Pointer to root page

– Pointer to “fast root”

Complete B-tree

Metapage

What can you do with a B-tree?

● Find key = X
● Find keys < X or > X
● ORDER BY
● LIKE 'foo%'

GIN
= Generalized Inverted Index

GIN

● Internal structure is basically just a B-tree
– Optimized for storing a lot of duplicate keys

– Duplicates are ordered by heap TID

● Interface supports indexing more than one key
per indexed value
– Full text search: “foo bar” → “foo”, “bar”

● Bitmap scans only

GIN entry tree

Three ways to store heap TIDs in
entry item

● Single heap TID
– trivial case, like normal B-tree

● Compressed list of heap TIDs
– also known as a “posting list”

● Pointer (= blk #) to the root of posting tree
– TIDs stored on a separate page or tree of pages, in

TID order

GIN
Entry tree Posting tree

Posting tree

Posting tree

GIN “fast updates”

● Insertions to GIN index go to a list of “fast
updated” tuple.
– Every search scans the list in addition to index

● Moved to index proper by VACUUM
– Or by inserts, if grows too big

● Can be disabled with FASTUPDATE = off
option

Complete GIN

Entry tree
Posting tree

Posting tree

Posting tree

Metapage

Fast update list

GiST
= Generalized Search Tree

GiST

● Tree-structure
● No order within pages
● Key ranges of pages can overlap

– No single “correct” location for a particular tuple

Range types

Find ranges that overlap

Sort by min

Sort by max

Group into clusters

GIST, single page

[100,150] (1, 10)
[1, 200] (0, 2)
[10, 60] (4, 2)
[30, 50] (4, 3)
[20, 70] (5, 1)
[110, 120] (2, 2)
[15, 30] (2, 1)
[105, 115] (3, 4)
[80, 90] (9, 2)
[25, 45] (8, 1)
[10, 20] (1, 7)

● Stores key + TID
● One index tuple per

heap tuple
● Unordered

GIST, two levels

[1, 200] (0, 2)
[20, 70] (5, 1)
[30, 50] (4, 3)
[10, 60] (4, 2)

[100,150] (1, 10)
[110, 120] (2, 2)
[105, 115] (3, 4)
[80, 90] (9, 2)

[1, 200]
[80, 150]
[10, 45]

[25, 45] (8, 1)
[15, 30] (2, 1)
[10, 20] (1, 7)

GIST search

Search key: [55, 60][55, 60]
[1, 200][1, 200] (0, 2)(0, 2)
[20, 70][20, 70] (5, 1)(5, 1)
[30, 50] (4, 3)
[10, 60][10, 60] (4, 2)(4, 2)

[100,150] (1, 10)
[110, 120] (2, 2)
[105, 115] (3, 4)
[80, 90] (9, 2)

[1, 200][1, 200]
[80, 150]
[10, 45]

[25, 45] (8, 1)
[15, 30] (2, 1)
[10, 20] (1, 7)

GiST

● Loose ordering
● Any key can legitimately be stored anywhere in

the tree
– As long as the keys in the upper levels are updated

accordingly.

– Performance goes out the window if you do that.

● Performance depends on how well the user-
defined Picksplit and Choose functions can
group keys

What can you do with GiST?

● GIS stuff
● Find points within a bounding box
● Nearest Neighbor

GiST, not only for geometries

● Contrib/intarray
● Full-text search

● Upper node “contains” everything below it
– For points, a bounding box of all points below it

– For intarray, the OR of all the nodes below it

SP-GiST
= Space-Partitioned GiST

SP-GiST

Space-Partitioned GIST

● No overlap between nodes
● Quite different from GiST
● Variable depth
● Multiple nodes per physical page

SP-GiST example: Trie

A
MSTERDAM (4, 9)

NKARA (0, 2)

B

E

R

L

LIN (2, 1)

N (0, 4)

H ELSINKI (0, 1)

GRADE (2, 3)

U CHAREST (1, 8)

DAPEST (3, 2)

SP-GiST page layout

A
MSTERDAM (4, 9)

NKARA (0, 2)

B

E

R

L

LIN (2, 1)

N (0, 4)

GRADE (2, 3)

U CHAREST (1, 8)

DAPEST (3, 2)

H ELSINKI (0, 1)

SP-GiST page layout

A
MSTERDAM (4, 9)

NKARA (0, 2)

B

E

R

L

LIN (2, 1)

N (0, 4)

GRADE (2, 3)

U CHAREST (1, 8)

DAPEST (3, 2)

H ELSINKI (0, 1)

Metapage

What can you do with it

● Kd-tree
– Points only; shapes might overlap

● Prefix tree for text

BRIN
= Block Range Index

BRIN

● Not a tree
● Contains one entry per heap block (or range of

heap blocks)
● Very compact
● Summary information for each block range

Amsterdam
Andorra la Vella
Ankara
Astana

Athens
Baku
Belgrade
Berlin

Bern
Bratislava
Brussels
Bucharest

Budapest
Chișinău
Copenhagen
Dublin

Helsinki
Kiev
Lisbon
Ljubljana

0: Amsterdam – Astana
1: Athens – Berlin
2: Bern – Bucharest
3: Budapest – Dublin
4: Helsinki – Ljubljana

HeapBRIN
Index

Approximation #1

...

3: Budapest – Dublin
0: Amsterdam – Astana
2: Bern – Bucharest

4: Helsinki – Ljubljana
1: Athens – Berlin

Amsterdam
Andorra la Vella
Ankara
Astana

Athens
Baku
Belgrade
Berlin

Bern
Bratislava
Brussels
Bucharest

Budapest
Chișinău
Copenhagen
Dublin

Helsinki
Kiev
Lisbon
Ljubljana

HeapBRIN
Index

Approximation #2

...

3: Budapest – Dublin
0: Amsterdam – Astana
2: Bern – Bucharest

4: Helsinki – Ljubljana
1: Athens – Berlin

Blk 0
Blk 1
Blk 2
Blk 3
Blk 4

Blk 5
...

Amsterdam
Andorra la Vella
Ankara
Astana

Athens
Baku
Belgrade
Berlin

Bern
Bratislava
Brussels
Bucharest

Budapest
Chișinău
Copenhagen
Dublin

Helsinki
Kiev
Lisbon
Ljubljana

HeapBRIN
Index

Approximation #3

......

3: Budapest – Dublin
0: Amsterdam – Astana
2: Bern – Bucharest

4: Helsinki – Ljubljana
1: Athens – Berlin

Blk 0
Blk 1
Blk 2
Blk 3
Blk 4

...

Metapage

Complete BRIN

Revision map

Contains fixed-width slot for each
heap block range, pointing to the
BRIN tuple for that range.

“Regular” BRIN pages

Contain BRIN tuples, in no
particular order

Metapage

Blk 5
...

BRIN: clustering is important!
Amsterdam
Andorra la Vella
Ankara
Astana

Athens
Baku
Belgrade
Berlin

Bern
Bratislava
Brussels
Bucharest

Budapest
Chișinău
Copenhagen
Dublin

Helsinki
Kiev
Lisbon
Ljubljana

0: Amsterdam – Astana
1: Athens – Berlin
2: Bern – Bucharest
3: Budapest – Dublin
4: Helsinki – Ljubljana

BRIN: clustering is important!
Amsterdam
ZagrebZagreb
Ankara
Astana

Athens
Baku
ZagrebZagreb
Berlin

Bern
ZagrebZagreb
Brussels
Bucharest

Budapest
ZagrebZagreb
Copenhagen
Dublin

Helsinki
Kiev
ZagrebZagreb
Ljubljana

0: Amsterdam – Zagreb
1: Athens – Zagreb
2: Bern – Zagreb
3: Budapest – Zagreb
4: Helsinki – Zagreb

UPDATE cities SET name='Zagreb' WHERE ...

What can you do with BRIN?

● Min-max for each block range
● Allows <, =, > searches

– Much slower than B-tree lookups

– Always scans the whole index (which is tiny though)

– Always scans the whole heap page (range)

● Store bounding box for points, shapes
● Bloom filters

What can you do with BRIN?

● Good for large tables with natural or accidental
ordering
– Tables loaded in primary key order

– Timestamp columns

● A single out-of-order tuple in a page will
“pollute” the index, and searches degenerate to
full sequential scans.

Summary

● B-tree

= < >

● GIN
– B-tree on steroids

– Stores duplicates efficiently

– Multiple keys per heap
tuple

● GiST
– “containment” hierarchy

● Sp-GIST
– Non-overlapping

● BRIN
– Containment

– For clustered data

– Tiny index, slow
searches

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

